# Formulas for the HESI Physics Test

If you’re planning to work in radiology or some other imaging-related job at a hospital or clinic, then you’ll need to take the HESI Physics Test. You might be scared, but you don’t need to be! We have prepared comprehensive test prep materials just for you. You can check out our free study guide for the HESI Physics Test, or answer the free sample questions for the HESI Physics Test we have at Union Test Prep and access our free flashcards for the HESI Physics Test to review terms you’re likely to see on this test.

Be sure you use the following formula chart for the HESI Physics Test when you study. We’ve compiled the essential formulas you’ll need to solve all the exercises you’ll face. You won’t be able to use it during the test, but it is an invaluable study tool, with all of the formulas you’ll need in one place.

$\begin{array}{|c|c|c|} \hline \textbf{Category} & \textbf{Formula} & \textbf{Symbols} \\ \hline & & f = \text{ force } (N) \\ \text{Physics} & f = m \cdot a & m = \text{ mass } (kg) \\ & & a = \text{ acceleration } (m/s^2) \\ \hline \text{Physics} & f_a = f_b & f_a = \text{ force exerted by a on b } (N) \\ & & f_b = \text{ force exerted by b on a } (N) \\ \hline & & f_g = \text{ force of gravity } (N) \\ \text{Physics} & f_g = G \dfrac{m_1 \cdot m_2}{r^2} & G = 6.673 \cdot 10^{-11} (Nm^2/kg^2) \\ & & m_n = \text{ mass of object n } (kg) \\ & & r = \text{ distance between objects } (m) \\ \hline & & PE_g = \text{ Gravitational Potential Energy } (J) \\ \text{Physics} & PE_g = m \cdot g \cdot h & m = \text{ mass } (kg) \\ & & g = \text{ gravity } (m/s^2) \\ & & h = \text{ height } (m) \\ \hline & & KE = \text{ Kinetic Energy } (J) \\ \text{Physics} & KE = \frac{1}{2} \cdot m \cdot v^2 & m = \text{ mass } (kg) \\ & & v = \text{ velocity } (m/s)\\ \hline & & PE_e = \text{ Elastic Potential Energy } (J) \\ \text{Physics} & PE_e = \frac{1}{2} \cdot k \cdot x^2 & k = \text{ spring constant } (kg/s^2) \\ & & x = \text{ length of stretch or compression } (m) \\ \hline & & U = \text{ Total Energy } (J) \\ \text{Physics} & U = KE + PE & KE = \text{ Kinetic Energy } (J) \\ & & PE = \text{ Potential Energy } (J) \\ \hline & & F = \text{ Electric Force } (N)\\ \text{Physics} & F = k \cdot \dfrac{ q_1 \cdot q_2}{r^2} & k = \text{ Coulomb's Constant } = 8.988 \cdot 10^9 (Nm^2/C^2)\\ & & q_n = \text{ Charge n } (C) \\ & & r = \text{ Distance between charges } (m) \\ \hline & & I = \text{ Current } (A) \\ \text{Physics} & I = \dfrac{V}{R} & V = \text{ Voltage } (V) \\ & & R = \text{ Resistance } (\Omega)\\ \hline & & v = \text{ velocity } (m/s) \\ \text{Physics} & v = \dfrac{d}{t} & d = \text{ distance } (m) \\ & & t = \text{ time } (s) \\ \hline & & \overline{\omega} = \text{ rotational speed } (rad/s \text{ or } deg/s) \\ \text{Physics} & \overline{\omega} = \dfrac{\theta}{t} & \theta = \text{ rotational distance } (rad \text{ or } deg) \\ & & t = \text{ time } (s) \\ \hline & & v = \text{ velocity } (m/s) \\ \text{Physics} & v = v_o + a \cdot t & v_o = \text{ initial velocity } (m/s) \\ & & a = \text{ acceleration } (m/s^2) \\ & & t = \text{ time } (s) \\ \hline & & x = \text{ position } (m) \\ & & x_o = \text{ initial position } (m) \\ \text{Physics} & x = x_o + v_o \cdot t + \frac{1}{2} \cdot a \cdot t^2 & v_o = \text{ initial velocity } (m/s) \\ & & a = \text{ acceleration } (m/s^2) \\ & & t = \text{ time } (s) \\ \hline & & v = \text{ velocity } (m/s) \\ & & v_o = \text{ initial velocity } (m/s) \\ \text{Physics} & v^2 = {v_o}^2 + 2a \cdot (x-x_o) & a = \text{ acceleration } (m/s^2) \\ & & x = \text{ position } (m) \\ & & x_o = \text{ initial position } (m) \\ \hline & & \lambda = \text{ wavelength } (m) \\ \text{Physics} & \lambda = \dfrac{c}{f} & c = \text{ speed of light } (m/s) \\ & & f = \text{ frequency } (1/s) \\ \hline & & A = \text{ Amplitude } (dB) \\ \text{Physics} & A = \dfrac{d}{f} & d = \text{ distance } (m) \\ & & f = \text{ frequency } (Hz) \\ \hline & & f = \text{ focal length } (m) \\ \text{Physics} & \dfrac{1}{f} = \dfrac{1}{d_o} + \dfrac{1}{d_i} & d_o = \text{ object distance } (m) \\ & & d_i = \text{ image distance } (m) \\ \hline & & M = \text{ magnification } \\ & & d_i = \text{ image distance } (m) \\ \text{Physics} & M = \dfrac{d_i}{d_o} = \dfrac{ h_i}{h_o} & d_o = \text{ object distance } (m) \\ & & h_i = \text{ image height } (m) \\ & & h_o = \text{ object height } (m) \\ \hline \end{array}$